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ABSTRACT 

The s t ress  intensity factor and crack opening have been 

calculated for a linearly viscoelastic strip with a slowly 

propagating central crack. 

strip a r e  displaced normal to the crack and the cases of clamped 

and shearfree s t r ip  edges have been investigated. 

a r e  based on the solution to the problem of a suddenly loaded 

strip with a stationary crack. The resulting integral equation has 

been solved numerically for arbitrary crack length and 

analytical solutions in  form of asymptotic se r ies  a r e  given 

for crack length up to about half the strip width. 

to a propagating crack is found by superposition. 

The edges of the infinitely long 

The results 

The response 
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In t r odu c tion 

Long narrow strips with a crack along the centerline a r e  par- 

ticularly useful and convenient tes t specimens for experimental 

studies of crack propagation in viscoelastic materials [l,  2,3,4] . 
energy dissipation due to internal viscosity strongly affects the frac- 

The 

ture mechanism in this class of materials and the typical rates of 

crack propagation a r e  orders of magnitude smaller than the ones en- 

countered in brittle materials [ 5 , 6 ] .  The results to be presented in 

this note can be used to theoretically estimate the rate of this energy 

dissipation as a function of crack velocity {4, 71 . 
Infinitely long elastic strips with cracks have been the subject 

of several theoretical investigations. 

Sneddon [ 81 , Knauss [ 91 and Lowengrub [ l o ]  should be mentioned 

Among them the work of 

in the context of this note. A detailed description of the stresses in 

a strip with clamped edges displaced normal to the semi-infinite 

crack has been given by Knauss [ 9 ] .  

lytical solutions hrsmall  central cracks in a strip with shearfree 

Lowengrub [ l o ]  derived ana- 

edges. In this note the experimentally important case of clamped 

strip edges displaced normal to the crack has been considered in 

addition to shearfree edges displaced in the same manner. The latter 

case can be looked upon as  a segment of an infinite plate containing 

an array of equally spaced cracks. The crack tips a re  assQmed to 

propagate with equal speeds in opposite directions. 

The problem of a suddenly loaded strip with stationary crack 

is considered first. 

Sneddon [8] is applied to solve the associated elastic problem. 

The Fourier transform method suggested by  

The 
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resulting integral equation is solved numerically for arbitrary crack 

length and analytical solutions in the form of asymptotic series have 

been obtained for crack length up to about half the strip width. 

solution to the problem of a propagating crack is then obtained by 

superposition, 

plate is  contained in this study a s  a limit case, 

The 

The case of a crack propagating through an infinite 
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Formulation of the Problem 

The geometry under consideration is shown in figure 1. The 

linearly viscoelastic strip is infinitely long and has unit thickness. 

All other dimensions of the strip a r e  large compared to unity and a 

state of plane s t ress  is assumed to exist throughout the strip. The 

strip edges a re  placed at  y = - t b and a crack extends along the x-axis 

from x = -a to x = a. The two crack tips propagate in opposite direc- 

tions of the x-axis with equal velocities v. 

ties will be considered and the inertia terms in the governing equa- 

tions a re  neglected. is produced in the 

strip far away from the crack tips by a parallel displacement of the 

strip edges. The final answers will be restricted to times at which 

the strip is in  i ts  long time or relaxed state far away from the crack 

tips. 

length and the crack opening depends only on the crack length and 

the crack velocity in addition to the material properties. 

Only small crack veloci- 

A constant lateral strain E 
0 

In this case the state of s t ress  is only a function of the crack 

The s t ress  

state and crack opening due to a step strain o r  any other strain his- 

tory, however, could also be easily calculated. 

Two sets of boundary conditions at y = - t b will be considered. 

Case 1 denotes clamped strip edges, i. e . ,  

y = - t b : uY(x,4--b) = bEo 

ux(x,+b) = 0 

and Case 2 describes shearfree strip edges 

y = t  - b : Uy(x,fb) =bc0 

(r ( x , t b )  = 0 
XY 
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where the subscripts x and y denote the corresponding components 

of s t ress  CT and displacement u in Cartesian coordinates. 

case may also be looked upon as a strip segment of an infinite plate 

containing an infinite row of cracks of equal length spaced in intervals 

of 2b along the y-axis. 

The second 

The strip material  is linearly viscoelastic and superposition 

can be used to simplify the solution of the problem. The s t ress  and 

strain fields in the strip can be obtained b y  adding the corresponding 

fields in a strip without crack subject to the desired boundary condi- 

tions ( la ,  b) or (2a, b), cf. figure Z a ,  and in a strip with crack under 

a certain internal pressure and subject to appropriate boundary 

conditions, cf. figure 2b. Due to the symmetry of the problem it 

suffices to consider only half the strip as in figure 2. 

of vanishing shear s t ress  CT 

except for Ix 14 a have then to be imposed along y = 0. 

CT in the crack has the same magnitude as the tensile s t ress  in the 

y-direction which exists in the strip without crack. This s t ress  CT 
YY 

may be a function of time due to the time dependence of the material 

properties or due to time dependent displacements of the strip edges. 

For constant displacements and in the case of long- time equilibrium 

the pressure in the crack is simply given by 

The conditions 

and displacements in the y-direction 
XY 

The pressure 

0 

where E denotes the long time or rubbery modulus of the material. r 
The stresses and strains ' in the mcracked strip, figure 2a, 

a re  readily obtained and only the problem shown in figure 2b remains 
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to be solved. This is a mixed boundary value problem in which the 

boundary segments over which stresses or displacements a r e  pre- 

scribed change with time and the standard Laplace transform tech- 

nique for the solution of problems of viscoelasticity cannot be applied 

in a straightforward manner [ 11, 121 . 
difficulty we shall first find the response caused by a suddenly applied 

internal pressure a. in a crack of constant length. 

a growing crack will then be obtained by a superposition of step load- 

ings. 

In order to circumvent this 

The solution for 



-6-  

Solution of the Step-Load Problem 

The Laplace transform method can be applied to find the 

solution to this problem, cf, figure 2b. Applying the Laplace trans- 

form in time 

to the equilibrium equation, stress-strain relationships and to the 

strain definition leads to the following statements in transformed 

space 

0.. = o  ; 0.. =0.. 
1J1 j 1J J1 

- - 
E -  L E -  - 

'kk E!. ; [Tkk =- 
1-2; 1J ( 1 G )  

- 1 -  
E . .  =-(u. t u .  ) v 2 1, j j , i  

(3)  

(4) 

(5) 

where a bar denotes the Laplace transform and the indices i, j indi- 

cate Cartesian components of the stresses 0, strains E and displace- 

ments u. The counterparts of Young's modulus and Poisson's ratio in the 

associated elastic problem a re  denoted.by E a n d  7, respectively, and the 

s t ress  and strain deviators a r e  defined as usually 

1 cr!. =0 . .  - -0  
1J IJ 3 kk 6ij 

E'.. = E.. - - & 6 . .  
1J 1J 3 kk ij 

1 

with 6.. standing for the Kronecker delta. 
1J 

Applying the Laplace transform to the boundary conditions 

X and introducing nondimensionalized coordinates 4, = --, q = f leads to 



q = o  : 

b 
a q = -  : 

and (Case 1) 

or (Case 2 )  

with s being the Laplace transform variable and Greek subscripts 

indicating 'that all lengths a re  non-dimensionalized by a. The equi- 

librium equations (3) can be identically satisfied by introducing the 

Ai ry  s t ress  function #(4,q). 

components a re  given by 

In terms of this function the s t ress  

Substitution of these expressions into the transformed com- 

patibility equation in two dimensions 

leads to a biharmonic equation for 4 

It has been demonstrated by Sneddon 181 that the solution of 

this equation subject to mixed boundary conditions like the ones stated 
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in (6) and (7) can be reduced to the solution of a Fredhslm integral 

equation. Applying the Fourier transform 

in the x variable to  equation (9)  gives r i se  to an ordinary 4th order 

differ entia1 equation 

The Fourier transform is denoted by an asterisk and w is the Fourier 

transform variable. 

distribution p(5) on q = 0 which is arbitrary but symmetrical over 

the q-axis. 

Equation (10) is first solved for a pressure 

The Laplace and Fourier transformed boundary condi- 

tions of this problem read 

- 
q = 0 : fJ ( 0 , O )  = 0 tr 

00 --t 
fJ (w, 0) = - P c ( w )  = - d p  Jp($)cos(wE)dt 

0 rlrl 

b * b  q = -  a : uq(w, -) a = 0 

-* b and (Case 1) u (w, --) = 0 

or  (Case 2) D (w, a) = 0 

El 

El11 
4 b 

where the cosine transformation of the arbitrary pressure distribu- 

tion is denoted by P,(w). 

The solution of equation (10) is 
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* 
@ ( w , ~ )  = A s i n h ( q )  t B c o s h ( q )  

t C q  s i n h ( q )  t D q  cosh (q) (1 3) 

with the factors A, b, C, D being functions of w; the pressure dis- 

tribution, Poisson’s ratio, and the strip geometry only. 

boundary conditions ( l la)  through (12b), i. e.,  Case 1, the factors a r e  

For the 

B( l )  =-  P (w) 
2 c  
0 2 b  2 t (3-7) sinh (0;) 

A(’) = - D ( l )  = C(l )  
b b b (3-;)sinh(w ;)cosh(w --) - (1t v) w - a 

- b b - 2  b P c ( w )  (ltv)(3-v)sinh(w--)cosh(w=-) - ( l + v )  w-  a 

( m a )  f (ltI;T)(3-V) sinh (a;) 
- 

2 b  
- - -  

- 2  b 2  4 t ( l t v )  2 w 

Replacing boundary condition (12b) by condition (12c), i. e. ,  Case 2 

leads to the following factors 

1 = - P (0) 2 c  

A bracketed superscript on some quantity will from now on indicate 

the set  of boundary conditions, i. e., Case 1 or  Case 2, forhwhich the 

quantity has been determined. By application of equations (4), (5) 

and (8) the vertical displacement in transformed space is found to 

be equal to 
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For q = 0 this reduces to the simple expression 

which after inversion o€ the Fourier transform leads to 

With the definition 

P c ( w )  = w[ 1 + (w %)I H(n)(w) 

for a new function H(w) equation (15) can be written as 

00 
$n) (g, 0) = & 4-s H(n)(w)cos(wg)dw (1 6 )  

E 0 rl 

and the pressure distribution ( l l b )  on q = 0 can be expressed as 

00 
(T(n'(E, 0) = - mxs[ a l t m ( " ) ( w  k)] H(n)(w)sin(wE)dwe (17) 

0 rlrl 

The functions m(n)(r); n = 1,2 a re  

r + e-'sinh(r) 

sinh (r) 2 Case 2: m(2)(r) = 

The as yet unsatisfied boundary conditions (6b, e)  can now be 

put in the form 
5 
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a, 
[ l+m(n)(cJ $)] H(n)(w)sin(wE)dw = - S E for 1 E (<1 

0 i 

(1 8b) 

The first of these dual integral equations can be identically satisfied 

[ 8 1 by the following repr es entation 

H(w) = -  J.' Z(r )  Jo(wr)dr 
S 

0 

where Z ( r )  is the new unknown function. 

Substitution of (19) into equation (18b) leads to an &el integral 

equation which can be solved resulting in a Fredholm equation of the 

second kind for Z ( r )  

1 
Z(")(r) t s Z(n)(r)M(n)(r,q) dq =- r . 

0 

The kernel M(n)(r, 9); n = 1,2 depends on the boundary conditions 

under consideration and is given by 

It should be noted that material properties do not enter the kernel 

M (2 1 ( r , q )  which corresponds to shearfree strip boundaries (Case 11, 

Once a solution of equation (20) has been found the s t ress  
i\ 

and strain fields of the associated elastic problem (Laplace trans- 

formed) can be readily calculated. The displacements and stresses 

along the strip centerline a r e  

equations (16) and (17). 

ly easy to determine from 

They are found to be equal ta 
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0 0 1  

\/27;;$ [ JZ(n)(r)Jo(wr)dr] cos(wc)dw OO 

17 sE(s) 0 0  

@ ( E # ,  0) =- 

The bracketed superscripts again distinguish the response due to the 

two sets of boundary conditions. The inversion of these expressions 

to real  time a re  trivial i f  the functions Z and m do not involve Pois- 

son’s ratio as in Case 2. The dependence on 7; (s )  is so complicated 

in Case 1 that an inversion of the Laplace transform cannot be per- 

formed. Values of v = 0. 5 in the rubbery domain and of v = 0. 3 in 

the g lassy  domain a r e  generally good approximations of the actual ma- 

terial behavior and Poisson’s ratio wili be considered a constant in 

order to be able to invert the transforAation. 
I 

The following relationship holds between the Laplace trans- 

forms of the creep function Dcr(l), thelrelaxation function E 

and Young’s modulus E(t) 

(t), r el 

1 - I - -  1 - 
Dots) = 2- 

s Ere,(s) sE(s 1 

Making use of this relationship the inversions of equations (22) and 

(23) a re  found to be 

00 1 
C(n’ (x, 0) = - c r O a  Jw[lt~n(~)(u:)] coS(w5) a Z(n)(r)Jo(wr)drdw, 

0 0 rlrl 
\ 

1x1 L a (25) 
where x, y coordinates have been reintroduced. 

load O is a function of time the stress’crfn) is seen to be independent 

of time. 

Unless the applied 

0 ,  ‘rlrl 
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Solution of the Integral Equation 

A closed form solution of equation (20) cannot be found due 

to the complicated kernel M(n)(r, 4). 

however, be established for crack length over strip width ratios a/b 

which a r e  srnall compared to unity [ lo ] .  
as ri;; - 0 and the solution of the integral equation is simply 

Asymptotic expansions can, 

The kernel goes to zero 
a 

a For E<< 1 the Bessel functions in the integrand of (21) can be re-  

placed by the first terms of their series expansions because the 

function -In) is rapidly approaching zero as  w increases. 

lowing expression is obtained for the product of Bessel functions 

The fol- 

2 2  1 a 4 r t q  2 2  4 t r q ) w  t ..... 16 (E) ( 4 

Substitution of this expansion into (21) results in 

+ .... I ’  (27 1 

where 

1 

These integrations can easily be carried out in Case 2. In Case 1 

(clamped edges), however, the integrands a r e  too complicated and 

numerical methods have to be applied. 

been obtained for the two cases: 

I 

The following values have 
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Case 1 

n=l  

(Clamped strip edges) 

v =0.3 

3.0939 

6. 617 

54.8456 

v =0.5 

3.7529 

8. 0182 

66.9148 

Case 2 
n = 2  

earfree strip edges) 

6 112 a 
-63 (2) 

With the kernel in the form of expression (27) the integral 

equation can be solved by the method of repeated substitutions. 

result of this operation is 

The 

a 4  For shearfree strip edges (n = 2)  and up to terms of order (r;) 
series has also been given by Lowengrub J l O ]  . 

this 

A numerical method is the only way in which a solution of 

equation (20) can be obtained for large values of a/b. 

integral equation is reduced to a system of algebraic equatigns by 

writing the integral in (20) as a sum. The elements of this s u m  a r e  

calculated by dividing the interval O <  $6 1 into N segments of equal 

The original 

length and applying some integration fdrmula to eadh segment. 

trapezoidal rule has been used in this Lase. 

The 
I 

Solution of the system 
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of equations by inversion of the coefficient matrix then supplies the 

values of Z(n)(r) at the points of subdivision. 

The numerical solution was first carried out by subdividing 

the interval 0 < r 6 1 into 10 equal parts. 

vergence of the results the number of divisions was doubled. For 

a/b = 5 the difference between the two results was found to be less 

than 0. 02% and this value got smaller with decreasing a/b ratio. 

This agreement was considered good enough and the interval size 

was not further decreased. 

In order to check the con- 

The results of the numerical solution a re  graphically pre- 

sented in figure 3. 

function of r. 

proaches zero. 

Z(n)(r)  is seen to be a monotonically increasing 

It; becomes a straight line of slope as  a/b ap- 
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The Stress Intensity Factor 

The state of s t ress  in the immediate surrounding of the crack 

tip is of particular interest with regard to crack propagation studies. 

The s t ress  component (r 

proached. 

tends to infinity as the crack tip is ap- YY 
The strength of this singularity is commonly expressed 

in terms of a s t ress  intensity factor. 

factor a r e  possible. 

s t ress  intensity factor I will be employed here: 

Various definitions of this 

The following definition of a nondimensional 

where oo is  the normal s t ress  in the y-direction which would exist 

in the strip i f  the crack was absent. 

and forming the limit the s t ress  intensity factor I(n) for a cracked 

strip, cf. figure 1, can be found. Strictly speaking zquation (25) 

By substituting expression (25) 

describes only the stresses in a strip under interhal pressure,  cf. 

figure 2a, and a s t ress  of magnitude G should be superposed. But 

the latter is a vanishing contribution as! the crack tip is approached 
0 

and does not affect the magnitude of the s t ress  intensity factor. 

The integrals in the expression for .‘n) (x, 0) cannot be eval- 

uated in closed form. An investigation [13] of their properties, 

however, shows that for x - a the s t ress  is given by 

The following simple expression for the s t ress  intensity factor is 

thus obtained 
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The ratio a/b has been introduced in the arguments of I(n) and Z(n) 

to indicate their dependence on the crack length over strip width ratio, 

Asymptotic expansions for the intensity factors a r e  readily 

obtained for small ratios a/b by substitution of the appropriate series 

expressions for Z(n), cf. equation (28). 

Figure 4 shows the s t ress  intensity factors as functions of 

a/b as calculated from equation (29) on the basis of the numerical 

and analytical solutions for Z ( r ) .  

a r e  seen to be equal to the value first  obtained by Inglis [14] for an 

infinitely large plate. 

a weak maximum which, depending on the case under consideration, 

lies somewhere between 0.4 < a/b < 0.8. 

intensity factors level off and approach the values [15] for serni- 

For a/b < 0. 08 the intensity factors 

As a/b increases the values for I(n) go through 

For a/b 3 0.8 the s t ress  

infinite cracks 

for 

clamped strip edges (Case 1) and 

shearfree strip edges (Case 2). 

For a/b 1 1. 5 the s t ress  intensity factors a re  practically equal to 

these constant values, i. e. , the difference between numerically 

determined values and the above limits is less than 0. 5%. 
‘1 

Depending on the boundary conditiohs and Poisson’s ratio 

the three term expansions for I(n) based on equation (28) hold up to 

a /b  < 0.28 (Case 1, v = 0.5) or a/b < 0.37 (Case 2)  with an e r ror  
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of less than 0.5%. 

It should be pointed out again that the stresses depend only 

through the crack length on the rate of crack propagation. For equal 

external loadings and equal crack length two cracks propagating with 

different velocities cause the same s t ress  fields in the viscoelastic 

strip as long as inertia effects can be neglected, 
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Crack Opening 

The crack opening can also be calculated from the solution 

to the step load problem since the displacements in the uncracked 

strip, cf. figure Za, a r e  zero along the strip centerline y = 0. The 

opening of a propagating crack can be obtained from the response 

due to a suddenly applied load (24) via the superposition scheme shown 

in figure 5. The following superposition integral is easily derived 

for arbitrary load and crack propagation histories 

(30) 

The opening near the crack tip is of special interest in crack 

propagation studies. 

and using integration by parts it can be shown [13] that there is one 

dominating term as x -a and a simplified expression for the opening 

near the propagating crack tip can be derived 

By differentiating the bracketed term in (30) 

For time independent loadings (r and constant propagation 

a(t) = vt a more convenient expression is readily obtained 
0 

speeds 

\ 

(31 1 

where use has been made of ( 2 9 )  and the new independent variable 
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6 = vt has been introduced, 

Figure 6 shows the shape of the crack tip as  a function of 

crack velocity for a particular composition of the Polyurethane elas- 

tomer Solithane 113 [16] , called Solithane 50/50. The contours have 

been calculated by numerically evaluating (31 ) for the experimentally 

determined creep function of this material [ l6]  . 
glassy modulus of Solithane 50/50 is E E 63000 psi  and the rubbery 

modulus is equal to Er = 430 psi. 

perature is about 1. 0 min. For equal stresses oo (stress in the strip 

i f  there was no crack) the crack tip is seen to become more and more 

pointed as the crack velocity increases. 

At T = 273OK the 

g 
The relaxation time at this tem- 

The very tip of the crack, 

however, remains blunt but has a radius of curvature which is 

several  orders of magnitude smaller than that of the stationary 

crack [13]. 
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Conclusions 

For crack length over strip width ratios greater than 1. 5 the 

s t ress  intensity factor is practically constant and is equal to the 

value for a semi-infinite crack in an infinitely long strip. Between 

0.4 < a < 0. 8 the intensity factor goes through a weak maximum the 

exact location of which depends on the boundary conditions and 

Poisson's ratio. 

the same as in an infinitely large plate with crack. 

b 

a For is< 0. 08 the intensity factor is essentially 

The stresses around the crack tip do not depend on the crack 

velocity provided inertia terms can be neglected in the governing 

equations and Poisson's ratio can be assumed a constant. The crack 

opening near the crack tip, however, depends strongly on the rate of 

crack propagation. 
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FIG. I STRIP GEOMETRY 
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I 1 I I 1 I I I 
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FIG.4 STRESS INTENSITY FACTORS AS FUNCTIONS OF 
CRACK LENGTH 
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PLUS 

t= tz  

FIG. 5 SUPERPOSITION SCHEME 


